Infinitely generated virtually free pro‐p groups and p‐adic representations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Generated Free Nilpotent Groups: Completeness of the Automorphism Groups

Baumslag conjectured in the 1970s that the automorphism tower of a finitely generated free group (free nilpotent group) must be very short. Dyer and Formanek [9] justified the conjecture concerning finitely generated free groups in the “sharpest sense” by proving that the automorphism group Aut(Fn) of a non-abelian free group Fn of finite rank n is complete. Recall that a group G is said to be ...

متن کامل

Infinitely Generated Veech Groups

We give a positive response to a question of W. Veech: Infinitely generated Veech groups do exist.

متن کامل

Geometry of Infinitely Generated Veech Groups

Veech groups uniformize Teichmüller geodesics in Riemann moduli space. We gave examples of infinitely generated Veech groups; see Duke Math. J. 123 (2004), 49–69. Here we show that the associated Teichmüller geodesics can even have both infinitely many cusps and infinitely many infinite ends.

متن کامل

Furstenberg Entropy Realizations for Virtually Free Groups and Lamplighter Groups

Let (G, μ) be a discrete group with a generating probability measure. Nevo shows that if G has property (T) then there exists an ε > 0 such that the Furstenberg entropy of any (G, μ)-stationary space is either zero or larger than ε. Virtually free groups, such as SL2(Z), do not have property (T). For these groups, we construct stationary actions with arbitrarily small, positive entropy. This co...

متن کامل

A Characterisation of Virtually Free Groups

We prove that a finitely generated group G is virtually free if and only if there exists a generating set for G and k > 0 such that all k-locally geodesic words with respect to that generating set are geodesic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology

سال: 2018

ISSN: 1753-8416,1753-8424

DOI: 10.1112/topo.12086